Андрей Смирнов
Время чтения: ~17 мин.
Просмотров: 0

Ультрафиолетовое излучение

Сфера применения Править

Чёрный свет Править

Для защиты документов от подделки их часто снабжают ультрафиолетовыми метками, которые видны только в условиях ультрафиолетового освещения.
Большинство паспортов, а также банкноты различных стран содержат защитные элементы в виде краски или нитей, светящихся в ультрафиолете.

Ультрафиолетовое излучение, даваемое лампами чёрного света является достаточно мягким и оказывает наименее серъёзное негативное влияние на здоровье человека.

Стерилизация Править

Стерилизация воздуха и твёрдых поверхностей Править

Ультрафиолетовая обработка воды, воздуха и поверхности не обладает пролонгированным эффектом. Достоинство данной особенности заключается в том, что исключается вредное воздействие на человека и животных. В случае обработки сточных вод УФ флора водоемов не страдает от сбросов, как, например, при сбросе вод, обработанных хлором, продолжающим уничтожать жизнь ещё долго после использования на очистных сооружениях.

Дезинфекция питьевой воды Править

На сегодняшний день ультрафиолет — один из самых эффективных и безопасных способов обеззараживания воды.

Химический анализ Править

Анализ минералов Править

Многие минералы содержат вещества, которые при освещении ультрафиолетовым излучением начинают испускать видимый свет. Каждая примесь светится по-своему, что позволяет по характеру свечения определять состав данного минерала. А. А. Малахов в своей книге «Занимательно о геологии» (М., «Молодая гвардия», 1969. 240 с) рассказывает об этом так:
«Необычное свечение минералов вызывают и катодный, и ультрафиолетовый, и рентгеновский лучи. В мире мёртвого камня загораются и светят наиболее ярко те минералы, которые, попав в зону ультрафиолетового света, рассказывают о мельчайших примесях урана или марганца, включённых в состав породы. Странным „неземным“ цветом вспыхивают и многие другие минералы, не содержащие никаких примесей.
Целый день я провёл в лаборатории, где наблюдал люминесцентное свечение минералов. Обычный бесцветный кальцит расцвечивался чудесным образом под влиянием различных источников света. Катодные лучи делали кристалл рубиново-красным, в ультрафиолете он загорался малиново-красными тонами. Два минерала — флюорит и циркон — не различались в рентгеновских лучах. Оба были зелёными. Но стоило подключить катодный свет, как флюорит становился фиолетовым, а циркон — лимонно-жёлтым.» (с. 11).

Качественный хроматографический анализ Править

Ловля насекомых Править

Ультрафиолетовое излучение нередко применяются при ловле насекомых на свет (нередко в сочетании с лампами, излучающими в видимой части спектра). Это связано с тем, что у большинства насекомых видимый диапазон смещён, по сравнению с человеческим зрением, в коротковолновую часть спектра: насекомые не видят того, что человек воспринимает как красный, но видят мягкий ультрафиолетовый свет.

Как проходит процедура светолечения

Процедуры светолечения проводятся как в домашних условиях, так и в специально оборудованных кабинетах.

Портативные аппараты для фототерапии в домашний условиях «Дюна-Т», «Геска-2», «Атмос», «Соллюкс», «Биоптрон» и лампу Минина используют, следуя инструкции, которая прилагается производителем.

В условиях стационара процедуру проводит специалист. Особой подготовки к её проведению не требуется, за исключением косметических процедур – может потребоваться проведение предварительных очистительных процедур.

Специалист определяет оптимальные значения светового потока, длительность сеансов, количество процедур и их частоту в индивидуальном порядке.

Сама процедура проводится в следующем порядке:

  • пациент принимает удобное положение, необходимое для воздействия,
  • на кожу наносится средство, улучшающее проникновение лучей и защищающее кожу от перегревания,
  • включается аппарат, луч направляется на нужный участок тела,
  • устанавливается таймер на определённое время,
  • по окончании процедуры удаляются остатки геля, на кожу наносится успокаивающий состав (по показаниям.)

При необходимости проведения дополнительных процедур по уходу за местом воздействия, врач дает дополнительные рекомендации и делает назначения.

Лабораторные источники

Рентгеновские трубки

Основная статья: Рентгеновская трубка

Схематическое изображение рентгеновской трубки. X — рентгеновские лучи, K — катод, А — анод (иногда называемый антикатодом), С — теплоотвод, Uh — напряжение накала катода, Ua — ускоряющее напряжение, Win — впуск водяного охлаждения, Wout — выпуск водяного охлаждения

Рентгеновские лучи возникают при сильном ускорении заряженных частиц (тормозное излучение), либо при высокоэнергетических переходах в электронных оболочках атомов или молекул. Оба эффекта используются в рентгеновских трубках. Основными конструктивными элементами таких трубок являются металлические катод и анод (ранее называвшийся также антикатодом). В рентгеновских трубках электроны, испущенные катодом, ускоряются под действием разности электрических потенциалов между анодом и катодом (при этом рентгеновские лучи не испускаются, так как ускорение слишком мало) и ударяются об анод, где происходит их резкое торможение. При этом генерируется тормозное излучение в рентгеновском диапазоне с непрерывным спектром и одновременно выбиваются электроны из внутренних электронных оболочек атомов анода. На пустые места (вакансии) в оболочках переходят другие электроны атома из его внешних оболочек, что приводит к испусканию рентгеновского излучения с характерным для материала анода линейчатым спектром энергий (характеристическое излучение, чьи частоты определяются законом Мозли: ν=A(Z−B),{\displaystyle {\sqrt {\nu }}=A(Z-B),} где Z — атомный номер элемента анода, A и B — константы для определённого значения главного квантового числа n электронной оболочки). В настоящее время аноды изготавливаются главным образом из керамики, причём та их часть, куда ударяют электроны, — из молибдена или меди.

Трубка Крукса

В процессе ускорения-торможения лишь около 1% кинетической энергии электрона идёт на рентгеновское излучение, 99 % энергии превращается в тепло.

Ускорители частиц

Рентгеновское излучение можно получать также и на ускорителях заряженных частиц. Так называемое синхротронное излучение возникает при отклонении пучка частиц в магнитном поле, в результате чего они испытывают ускорение в направлении, перпендикулярном их движению. Синхротронное излучение имеет сплошной спектр с верхней границей. При соответствующим образом выбранных параметрах (величина магнитного поля и энергия частиц) в спектре синхротронного излучения можно получить и рентгеновские лучи.

Длины волн (нм, в числителе) и энергии (эВ, в знаменателе) спектральных линий K-серий для ряда анодных материалов
Обозначения линии (в нотации Сигбана) Kα₁ (переход L3→K) Kα₂ (переход L2→K) Kβ₁ (переход M3→K) 5(переход M5→K) K (край)
Cr 0,22897260(30)5414,8045(71) 0,22936510(30)5405,5384(71) 0,20848810(40)5946,823(11) 0,2070901(89)5986,97(26) 0,2070193(14)5989,017(40)
Fe 0,1936041(3)6404,0062(99) 0,1939973(3)6391,0264(99) 0,1756604(4)7058,175(16) 0,174423(15)7108,26(60) 0,1743617(5)7110,747(20)
Co 0,17889960(10)6930,3780(39) 0,17928350(10)6915,5380(39) 0,16208260(30)7649,445(14) 0,1608934(44)7705,98(21) 0,16083510(42)7708,776(20)
Ni 0,16579300(10)7478,2521(45) 0,16617560(10)7461,0343(45) 0,15001520(30)8264,775(17) 0,1488642(59)8328,68(33) 0,14881401(36)8331,486(20)
Cu 0,154059290(50)8047,8227(26) 0,154442740(50)8027,8416(26) 0,13922340(60)8905,413(38) 0,1381111(44)8977,14(29) 0,13805971(31)8980,476(20)
Zr 0,07859579(27)15774,914(54) 0,07901790(25)15690,645(50) 0,07018008(30)17666,578(76) 0,069591(15)17816,1(38) 0,06889591(31)17995,872(80)
Mo 0,070931715(41)17479,372(10) 0,0713607(12)17374,29(29) 0,0632303(13)19608,34(42) 0,0626929(74)19776,4(23) 0,061991006(62)20000,351(20)
Ag 0,055942178(76)22162,917(30) 0,05638131(26)21990,30(10) 0,04970817(60)24942,42(30) 0,0493067(30)25145,5(15) 0,04859155(57)25515,59(30)
W 0,020901314(18)59318,847(50) 0,021383304(50)57981,77(14) 0,01843768(30)67245,0(11) 0,0183095(10)67715,9(38) 0,0178373(15)69508,5(58)

Бизнес и финансы

БанкиБогатство и благосостояниеКоррупция(Преступность)МаркетингМенеджментИнвестицииЦенные бумагиУправлениеОткрытые акционерные обществаПроектыДокументыЦенные бумаги — контрольЦенные бумаги — оценкиОблигацииДолгиВалютаНедвижимость(Аренда)ПрофессииРаботаТорговляУслугиФинансыСтрахованиеБюджетФинансовые услугиКредитыКомпанииГосударственные предприятияЭкономикаМакроэкономикаМикроэкономикаНалогиАудитМеталлургияНефтьСельское хозяйствоЭнергетикаАрхитектураИнтерьерПолы и перекрытияПроцесс строительстваСтроительные материалыТеплоизоляцияЭкстерьерОрганизация и управление производством

Сфера применения[править | править код]

Чёрный светправить | править код

Для защиты документов от подделки их часто снабжают люминесцентными метками, которые видны только в условиях ультрафиолетового освещения. Большинство паспортов, а также банкноты различных стран содержат защитные элементы в виде краски или нитей, светящихся в ультрафиолете.

Ультрафиолетовое излучение, даваемое лампами «чёрного» света, является достаточно мягким и оказывает наименее серьёзное негативное влияние на здоровье человека. Однако при использовании данных ламп в тёмном помещении существует некоторая опасность для глаз, связанная именно с незначительным излучением в видимом спектре: в темноте зрачок расширяется и больше излучения беспрепятственно попадает на сетчатку.

Обеззараживание ультрафиолетовым излучениемправить | править код

В наиболее распространённых лампах низкого давления почти весь спектр излучения приходится на длину волны 253,7 нм, что хорошо согласуется с пиком кривой бактерицидной эффективности (то есть эффективности поглощения ультрафиолета молекулами ДНК).
Этот пик находится в районе длины волны излучения равной 253,7 нм, которое оказывает наибольшее влияние на ДНК, однако природные вещества (например, вода) задерживают проникновение УФ.

Обеззараживание воздуха и поверхностейправить | править код

Файл:UV-ontsmetting laminaire-vloeikast.JPG

Кварцевая лампа, используемая для стерилизации в лаборатории

Ультрафиолетовая обработка воды, воздуха и поверхности не обладает пролонгированным эффектом. Достоинство данной особенности заключается в том, что исключается вредное воздействие на человека и животных. В случае обработки сточных вод УФ флора водоемов не страдает от сбросов, как, например, при сбросе вод, обработанных хлором, продолжающим уничтожать жизнь ещё долго после использования на очистных сооружениях.

Дезинфекция питьевой водыправить | править код

Принцип действия УФ-излучения. УФ-дезинфекция выполняется при облучении находящихся в воде микроорганизмов УФ-излучением определённой интенсивности (достаточная длина волны для полного уничтожения микроорганизмов равна 260,5 нм) в течение определённого периода времени. В результате такого облучения микроорганизмы «микробиологически» погибают, так как они теряют способность воспроизводства. УФ-излучение в диапазоне длин волн около 254 нм хорошо проникает сквозь воду и стенку клетки переносимого водой микроорганизма и поглощается ДНК микроорганизмов, вызывая нарушение её структуры. В результате прекращается процесс воспроизводства микроорганизмов. Следует отметить, что данный механизм распространяется на живые клетки любого организма в целом, именно этим обусловлена опасность жесткого ультрафиолета.

Химический анализправить | править код

Анализ минераловправить | править код

Многие минералы содержат вещества, которые при освещении ультрафиолетовым излучением начинают испускать видимый свет. Каждая примесь светится по-своему, что позволяет по характеру свечения определять состав данного минерала. А. А. Малахов в своей книге рассказывает об этом так:

Качественный хроматографический анализправить | править код

Ловля насекомыхправить | править код

Ультрафиолетовое излучение нередко применяется при ловле насекомых на свет (нередко в сочетании с лампами, излучающими в видимой части спектра). Это связано с тем, что у большинства насекомых видимый диапазон смещён, по сравнению с человеческим зрением, в коротковолновую часть спектра: насекомые не видят того, что человек воспринимает как красный, но видят мягкий ультрафиолетовый свет.

Искусственный загар и «горное солнце»править | править код

В этом разделе не хватает ссылок на источники информации.Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.Эта отметка установлена 20 июня 2013 года.

править | править код

править | править код

Файл:5000 rubley ultraviolet.png

Денежная купюра в ультрафиолетовом излучении

Ультрафиолетовое излучение применяется для:

  • Затвердевания зубных пломб.
  • Защите денежных купюр от подделки.

В качестве неионизирующего облучения для получения генетических мутаций. В связи с невысокой проникающей способностью воздействуют преимущественно на пыльцу. Вызывает особенно большое количество мутаций при облучении излучением с длиной волны, близкой к 265 нм, которое хорошо поглощается дезоксирибонуклеиновыми кислотами.

Источники ультрафиолета — откуда он берется?

Так
откуда же берется опасный ультрафиолет? Помните детскую считалку – Каждый
Охотник Желает Знать Где Сидит Фазан.

Начальные буквы слов рассказывают о семи основных цветах, которые мы визуально различаем в солнечном спектре. Не всегда кстати, правильно.

Так вот, солнечный свет — это не просто желтый прозрачный лучик, это целый спектр лучей и разноцветные цвета в нем, составляют очень малую часть.

Большую долю (около 53%) занимает невидимое инфракрасное излучение, или попросту говоря тепло.

Мы его не видим, зато чувствуем.

Инфракрасные
лучи находятся с одного края спектра. А вот с другой стороны (Фазан –
Фиолетовый свет), как раз-таки и прячется наш ультрафиолет, плавно переходя в
рентгеновское излучение.

Хотя мы этого света и не видим, зато насекомые (и некоторые люди с отклонениями!) вполне способны его различать. Вот так его распознают пчелы.

Там, где на цветах темные пятна – это “посадочные” полосы для пчелки, куда ей нужно приземляться для сбора нектара.

Поговаривают,
что великий художник Клод Моне тоже видел ультрафиолет. И даже многие его
картины навеяны именно таким зрением.

Причина
была в катаракте одного глаза. После операции по удалению хрусталика, который и
останавливает “синие лучи”, не давая им попадать на сетчатку, у него и
появилась такая сверхспособность.

Многие картины он создавал с одним открытым глазом. Сначала закрывал правый глаз и рисовал одно полотно, затем левый и писал другое. Разница произведений была просто поразительна.

42.Теплоотдача организма.Физические основы термографии.

Тело
человека имеет определенную температуру
благодаря терморегуляции, важной частью
которой является теплообменорганизма с окружающей средой. Этот
теплообмен происходит посредствомтеплопроводности, конвекции, испаренияиизлучения

Так как
теплопроводность воздуха мала, то этот
вид теплоотдачи незначителен. Испарение
происходит с поверхности кожи и легких.
На него приходится около 30% теплопотерь,
а на конвекцию около 20%.Максимальная
доля теплопотерь (около 50%) приходится
на излучение во внешнюю среду от одежды
и открытых частей тела. Вычислим эти
теплопотери, сделав два допущения:

——Излучающие
тела (кожа человека, ткань одежды) примем
за серые. У серых тел, подобно
абсолютно черному телу коэффициент
поглощения не зависит от длины волны и
температуры, но по величине меньше
единицы. Закон Стефана–Больцмана для
серых тел имеет вид:

ЕТ
= δ Т
4,

где
δ = α ∙ σ – приведенный коэффициент
излучения,α– коэффициент
поглощения серого тела,σпостоянная Стефана-Больцмана.

Применим закон Стефана–Больцмана к
неравновесному излучению, каковым
является излучение тела человека.

Пусть раздетый человек, температура
поверхности тела которого Т1находится в комнате с температуройТ
(
Т<Т1).

Тогда
излучение с открытой поверхности тела
площадью
Sимеет
мощность:

Р1
= δ
S Т14 .

Поглощенная мощность от окружающих
предметов равна:

Р=
δ
S Т4 .

Таким образом, мощность, теряемая
человеком при взаимодействии с окружающей
средой посредством излучения, равна:

Р = Р1
– Р
= δ S
1 4 – Т4) .

Для одетого человека под Т1понимается температура поверхности
одежды.

Патологические
процессы, такие как опухоли, воспалительные
очаги, повышают местную температуру,
поэтому изменение интенсивности
ИК-излучения может служить диагностическим
признаком наличия патологических
процессов.
Этот диагностический метод
называетсятермографией.

Термография абсолютно безвредна и в
перспективе может стать методом массового
профилактического обследования
населения.

Определение различия температуры
поверхности тела при термографии в
основном осуществляется двумя методами.

В одном случае используются
жидкокристаллические индикаторы,
оптические свойства которых очень
чувствительны к небольшим изменениям
температуры

Помещая эти индикаторы на тело больного,
можно визуально по изменению их цвета
определить местное различие температуры.

Другой метод, более распространенный,
— технический, он основан на использовании
тепловизоров.

Тепловизор — это техническая система,
подобная телевизору, которая способна
воспринимать инфракрасное излучение,
идущее от тела, преобразовывать это
излучение в оптический диапазон и
воспроизводить изображение тела на
экране.
Части тела, имеющие разные
температуры, изображаются на экране
разным цветом.

Очистка и стирка белья

А
еще УФ лучи помогают нам выглядеть неотразимо. Каким образом? Одна из задач
средств для стирки – создать видимость ярко белого и чистейшего белья.

Это
происходит за счет поглощения длин волн, которые мы не видим, т.е. того самого ультрафиолета.
После чего хим.вещество попавшее в ткань с отбеливателем (из порошка или
чистящей жидкости), переизлучает эти волны в ярко видимом спектре.

В итоге получается, что это не платье стало новее нового и идеально чистым, а его заставили светиться в более ярких белых оттенках. Ваши глаза таким образом просто напросто дурят. Грамотный подход и работа со светом творит настоящие чудеса.

Посмотрите
на порошок в лучах ultravioleta.

Примерно
такой же эффект наблюдается и с вашей постиранной одеждой.

На что смотреть при выборе прибора

Перед покупкой стоит определиться с целью приобретения ультрафиолетовой лампы. В домашних условиях используют лампы небольшой мощности. По фотографиям УФ ламп можно оценить, будет ли так же гармонично смотреться светильник в интерьере, как на фото. Приобретая лампу для конкретного применения, следуйте рекомендациям производителя. Внимательно прочтите инструкцию к прибору и выясните мощность, длину волны, сферу применения прибора

Важно также информация о сроке службы и сведения о комплектации дополнительными устройствами и насадками

Цели приобретения УФО-лампы

От точности определения сферы применения прибора зависит правильность выбора модели. На сегодняшний день ультрафиолетовые лампы приобретают для использования в следующих  целях:

Таблица 2

Цели использования УФ-лампы

Цель приобретения

Сфера применения

Изменение физических свойств материалов

Стоматология, косметология
Защита от подделок, обнаружение следов биологических жидкостей Криминалистика и уголовное право
Восполнение дефицита естественного ультрафиолета, дезинфекция Медицина, в быту

Способ крепления устройства

Оборудование с ультрафиолетовыми лампами в большинстве случаев выпускается с настенным креплением, иногда в продаже можно встретить потолочные варианты. Во всех случаях устройство можно разместить на столе, игнорируя инструкцию. Однако лучше довериться выбору производителя,  предлагающего для стационарных моделей большой мощности определенный тип крепления. Устройство размещают на выбранном месте и закрепляют, если перемещения не входят в планы эксплуатации. Мобильные приборы можно установить на полу или на любой поверхности.

Мощность ультрафиолетового излучателя

В зависимости от размера помещения подбирают и мощность прибора.

Для правильного использования в инструкции к УФ лампе указывается площадь действия прибора. Принято считать, что для комнаты объемом до 65 куб. м достаточно мощности лампы 15 Вт при спектре излучения от 230 нм. Если при высоте 3 м площади помещения составляет не более 35 кв.м., то лампы с указанной мощностью в 15 Вт будет достаточно для обработки.

Длина волны

Основная характеристика устройства с ультрафиолетовыми лампами — длина волны:

Таблица 3

Длина волны УФ-лампы

Тип излучения Подгруппы ультрафиолетового диапазона спектра Ультрафиолетовый диапазон
Ближний ультрафиолет А длинноволновой диапазон 315–400 нм (UVA)
Средний ультрафиолет В средневолновой диапазон 280–315 нм (UVB)
Дальний ультрафиолет С коротковолновой диапазон 100–280 нм (UVC)
Экстремальный буквенное обозначение отсутствует ультракоротковолновой диапазон 10–121 нм (XUV)

Люди могут воспринимать зрительно ближний ультрафиолет благодаря фотолюминесценции. Дальний и экстремальный диапазоны в естественных условиях практически недоступны, так как лучи данного спектра почти полностью поглощаются, проходя через слои земной атмосферы.

Срок службы

Длительность эксплуатации UV лампы обычно указывается производителем в виде показателя часов службы. В зависимости от типа ламп срок использования может быть от 6000 до 13000 часов работы без существенного уменьшения мощности излучения. На длительность срока службы влияют следующие факторы:

  • температура среды применения;
  • внешние условия в процессе эксплуатации;
  • количество включений;
  • номинальная мощность прибора;
  • расположение лампы в соответствии с рекомендациями производителя;
  • соблюдение правил эксплуатации.

УФ лампы запрещено выбрасывать в контейнеры с обычными бытовыми отходами. Они подлежат утилизации особым способом, поэтому отслужившие свой срок лампы сдают в пункты приема.

Быстрое старение из-за ультрафиолета

UVA отвечает за старение материалов и появление морщин раньше
времени. Он разрушает коллагеновые волокна, и кожа теряет эластичность.

Именно
лучи UVA составляют львиную долю всего УФ излучения на Земле (95%).

Все наверняка видели старые выцветшие баннеры на улицах, а также растрескавшуюся изоляцию отдельных марок проводов и кабелей, висящих на открытом воздухе.

Так вот, разрушает их в первую очередь не дождь и ветер, а ультрафиолет. Он и вызывает фактическое старение материала на молекулярном уровне.

Хотите
искусственно состарить вещи? Поместите их на несколько часов под интенсивный
ультрафиолет.

По
примерным расчетам, один год под солнцем равен 40 часам, проведенным в
небольшом ящике с двумя лампами ДРЛ (без стеклянной колбы) мощностью 400Вт.

Один киловатт такого освещения обеспечивает 100Вт вредного излучения. В то время как солнце излучает 1,3 милливатт на 1см2.

Такие
искусственные состариватели пригодятся тем, кто профессионально занимается
наружной рекламой или автосервисом и дает на свою работу длительную гарантию.

Сможете
реально проверить краски и винил. Как они поведут себя через несколько лет и на
что будут похожи.

Воздействие на здоровье человека Править

Биологические эффекты ультрафиолетового излучения в трёх спектральных участках существенно различны, поэтому биологи иногда выделяют, как наиболее важные в их работе, следующие диапазоны:

  • Ближний ультрафиолет, УФ-A лучи (UVA, 315—400 нм)
  • УФ-B лучи (UVB, 280—315 нм)
  • Дальний ультрафиолет, УФ-C лучи (UVC, 100—280 нм)

Практически весь UVC и приблизительно 90 % UVB поглощаются озоном, а также водным паром, кислородом и углекислым газом при прохождении солнечного света через земную атмосферу. Излучение из диапазона UVA достаточно слабо поглощается атмосферой. Поэтому радиация, достигающая поверхности Земли, в значительной степени содержит ближний ультрафиолет UVA, и, в небольшой доле — UVВ.

Действие на кожу Править

Использование «СОЛЯРИЯ» по 10 минут в день лечит прыщи, придает коже красивый оттенок.

Положительные эффекты Править

В ХХ веке было впервые показано, почему УФ — излучение оказывает благотворное воздействие на человека. Физиологическое действие Уф-лучей было исследовано отечественными и зарубежными исследователями в середине прошлого столетия (Г. Варшавер. Г. Франк. Н. Данциг, Н. Галанин. Н. Каплун, А. Парфенов, Е. Беликова. В. Dugger. J. Hassesser. Н. Ronge, Е. Biekford и др.) |1-3|.
Было убедительно доказано в сотнях экспериментов, что излучение в УФ области спектра (290—400 нм) повышает тонус симпатико-адреналиновой системы, активирует защитные механизмы, повышает уровень неспецифического иммунитета, а также увеличивает секрецию ряда гормонов. Под воздействием УФ излучения (УФИ) образуются гистамин и подобные ему вещества, которые обладают сосудорасширяющим действием, повышают проницаемость кожных сосудов. Изменяется углеводный и белковый обмен веществ в организме. Действие оптического излучения изменяет легочную вентиляцию — частоту и ритм дыхания; повышается газообмен, потребление кислорода, активизируется деятельность эндокринной системы. Особенно значительна роль УФ излучения в образовании в организме витамина Д, укрепляющего костно-мышечную систему и обладающего антирахитным действием.
Особо следует отметить, что длительная недостаточность УФИ может иметь неблагоприятные последствия для человеческого организма, называемые «световым голоданием». Наиболее частым проявлением этого заболевания является нарушение минерального обмена веществ, снижение иммунитета, быстрая утомляемость и т. п.

Несколько позже в работах (О. Г. Газенко, Ю. Е. Нефедов, Е. А. Шепелев, С. Н. Залогуев, Н. Е. Панферова, И. В. Анисимова) указанное специфическое действие излучения было подтверждено в космической медицине . Профилактическое УФ облучение было введено в практику космических полетов наряду с Методическими указаниями (МУ) 1989 г. «Профилактическое ультрафиолетовое облучение людей (с применением искусственных источников УФ излучения)» . Оба документа являются надежной базой дальнейшего совершенствования УФ профилактики.

Отрицательное действие на кожу Править

Ультрафиолетовое излучение неощутимо для глаз человека, но при воздействии вызывает типично радиационное поражение (ожог сетчатки).Так, например, 1 августа 2008 года десятки россиян повредили сетчатку глаза во время солнечного затмения. Они жаловались на резкое снижение зрения и пятно перед глазами. По словам врачей сетчатку можно восстановить.

Классификация спектров.

Все спектры делятся на два основных класса: спектры испускания (или эмиссионные) и спектры поглощения. Каждый класс, в свою очередь, подразделяется на непрерывные (сплошные), полосатые и линейчатые спектры. Поясним эту классификацию на примере видоизмененной схемы опыта Ньютона (которая, заметим, была применена лишь столетие спустя). Основное нововведение в этой схеме состояло в том, что круглое отверстие в ставне было заменено коллиматором – узкой щелью и линзой перед призмой. Вторая линза помещалась за призмой и предназначалась для проецирования спектра на экран, как это делал сам Ньютон в своих более поздних опытах. Если на щель простого спектроскопа (как теперь называется устройство, состоящее из щели, линз и призмы) направить свет от лампы накаливания, то на экране возникает непрерывный спектр со следующим порядком чередования цветов: фиолетовый, синий, голубой, зеленый, желтый, оранжевый и красный. Если же щель осветить пламенем, в которое внесена крупинка поваренной соли (хлорида натрия NaCl), то спектр будет фактически состоять из двух близко расположенных ярких желтых линий. Аналогично, если щель осветить красным светом неоновой рекламной трубки, то на экране появится ряд ярких красных линий. Здесь каждая линия – это изображение щели спектроскопа, образованное светом определенной длины волны, а полученный спектр называется линейчатым спектром испускания. Существуют спектры, состоящие из групп линий, расположенных настолько тесно, что каждая группа выглядит как узкий участок непрерывного спектра. Такие спектры называются полосатыми.

Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации